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Pressure-solution and crystallization deformation

By D. W. DurNEY
School of Earth Sciences, Macquarie University, North Ryde,
New South Wales, Australia

[Plate 10]

Pressure-solution and associated crystallization are subclasses of a diffusive mass
transport process which involves diffusion in grain boundary and pore solutions.

The manner in which they give rise to permanent deformation is examined in
three steps:

(a) Asimplified reversible non-hydrostatic crystal-solution thermodynamic criterion
(first order, 2-components) based on Gibbs provides a manageable basis for deter-
mining the direction in which the process will run (regions of dissolution or growth)
in stressed porous, non-porous, closed and open systems.

(b) Considerations of irreversible diffusion and deformation indicate certain restric-
tions on the displacements accompanying permanent growth or dissolution and hence
on the form of the solution-transfer strain rate tensor.

(¢) The way in which the process develops, and its rate, are governed by kinetic
factors, especially diffusion kinetics. As well as having an exponential dependence
on stress, the displacement rate is influenced by absolute temperature, grain
boundary diffusivity, initial solubility and geometric scale.

1. INTRODUCTION

Recently there seems to have been a developing interest in diffusive mass transport processes in
rocks and in the structural and chemical rearrangements they produce.

This paper aims to establish some of the things that thermodynamics can and cannot tell us
about the strains and displacements associated with one group of these processes — stress
controlled fluid solution diffusion or solution-transfer or solution redeposition processes.

The paper starts by defining the physical geological conditions that might reasonably be
expected and the types of geological process for which an explanation is sought.

2. DIFFUSION MECHANISMS

Four main types of diffusion process which may operate in polycrystalline materi 1 and its
cavities, and which may involve differing contributions of self-diffusion and solution-diffusion
are:

(a) Intragranular (volume, lattice) diffusion through crystal lattices, usually self-diffusion,
though may involve foreign interstitial atoms;

(b) Intergranular (grain boundary) diffusion along grain boundaries, either self-diffusion or
solution-diffusion or both;

(¢) Free surface diffusion along crystal/free fluid interfaces, self- and/or solution-diffusion;

(d) Free flurd diffusion through a free vapour, melt or fluid solution. (‘Free’ is used here to
signify a true fluid outside the boundary layer or the zone of influence of crystal atomic
charges).
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230 D. W.DURNEY

Empirically, rates of diffusion are found to increase from (a) to (d) (Barrer 1951; Jost 1952),
no doubt because of the corresponding decreasing influence of crystalline forces on the
diffusing species. Furthermore, the presence of a solvent phase such as water (solution-
diffusion) can greatly enhance diffusion rates in ionic polycrystals. Fyfe, Turner & Verhoogen
(1958) report one reaction accelerated by 108-10'° using a hydrothermal medium.

Metallurgists and physicists usually consider diffusion deformation processes in terms of
self-diffusion ; for example Nabarro—Herring creep (Nabarro 1948), Coble creep (Coble 1963),
and grain boundary sliding/diffusion models (Gifkins 1967; Ashby & Verral 1973). In upper
to middle crustal deformations, however, solution-diffusion processes are believed to be of
greater importance:

Pores, cavities and fissures below groundwater level are known to normally contain an
aqueous fluid.

Vacuoles within minerals always contain one kind of fluid or another (even in granulite
facies rocks, where it is chiefly CO,, Touret 1974).

Carbonate minerals, and hydrous minerals such as chlorites, micas and amphiboles, are
common rock-forming minerals and presumably a carbonic or aqueous phase must be present
along grain boundaries to maintain their stability.

Electron microscopy on natural quartz (McLaren & Phakey 1965; White 1973) often reveals
minute bubbles (interpreted as fluid filled) strung out along grain boundaries and dislocations.

3. GRAIN BOUNDARIES

While the mechanical state p = o, in free solutions and at free surfaces is readily under-
stood, further discussion is required on grain boundaries especially if free pore solutions happen
to be absent from the rocks. (As the rocks are being considered in a state of burial it could be
assumed that micro-crack porosity, which may just be an unloading phenomenon, is often
zero. Cf. Simmons & Nur (1968) and Brace (1972) for discussion on micro-cracks and pores.)

The concept of a grain boundary which is adopted here is that of a disordered zone beiween
two separate crystal lattices containing an atmosphere of impurity ions in interatomic spaces,
in lattice vacancies, holes and channels, and in sub-micrometre sized bubbles.

Two effects can be concluded about the impurity ions. Firstly, because of their charge
neutralizing and dielectric properties they reduce interatomic bonding in the disordered zone
and would thus significantly enhance ionic mobility. Secondly, they act as a dilutant for these
‘mobilized’ ions, and combined, they could be regarded as a solution phase (cf. ‘intergranular
film or fluid’ (Fyfe et al. 1958; Orville 1962); ‘solution film’ (Weyl 1959); ‘dispersed phase’
(Gresens 1966)).

Both the mechanical properties and the spatial distribution of this ‘solution’ are presumably
transitional between that of the crystal and a free fluid. But to use thermodynamics it is neces-
sary to idealize the situation into a discrete crystal phase and a discrete solution phase. The
most general assumption about the stresses would be that the two phases are under different
non-hydrostatic stresses such that the crystals transmit a macroscopic effective stress across the
grain boundary through interlattice bridging bonds:

a.eff — a.crystal — a.soln' (1)

1 For list of symbols, see p. 239.
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PRESSURE-SOLUTION AND CRYSTALLIZATION DEFORMATION 231

Given the ability to diffuse readily, it seems reasonable that the mechanical strength of the
solution is low, and so the approximation follows that

¢l ~ p, (2)
It is noted in particular that Gibbs’s assumption (1878) that p equals a principal stress

on the crystal, is not required for grain boundaries and indeed poses various mechanical
problems. However, the condition must be satisfied that

p < o+loy, (3)
where oy is probably small. The equality signifies a special and critical mechanical state and
not a general state at grain boundaries. Because of low o thisis probably confined to o faces or

thereabouts when it does occur. Hence, even at the critical condition, most parts of a differen-
tially stressed crystal’s grain boundary would be described by the inequality.

4, TYPES OF GEOLOGICAL PROCESS CONSIDERED

Geological terms describing stress-controlled solution-diffusion processes are discussed below.
The distinction from other solution processes, those which involve chemical reactions or bulk
flow of solutions, is mainly subjective. In nature one might expect a considerable interplay of
these different effects.

Pressure-solution (Sorby 1908) (Drucklosung): the dissolution and removal of mineral substance
at a grain contact subjected to ‘pressure’. The term ‘pressure’ is vague but its meaning should become
clear in §5. ‘Pressure’ or ‘stress’ is usually regarded as ‘promoting’ the process. Attribution of
this and the succeeding processes to specific ‘principles’ is deferred until further discussion.
The term ‘solution’ is understood here to mean ‘dissolution’, so ‘pressure-solution’ does not
include crystallization processes.

Cavity growth: free crystal growth from and into a free pore or cavity fluid phase (fluid inclusions
wholly within a crystal are not regarded as pores in the present context).

Pressure growth: synkinematic additive overgrowth crystallization of a mineral at a grain contact subjected
to ‘pressure’. This is the complete reverse of pressure-solution, and logically, if one accepts
pressure-solution one also has to admit this process. The process could be regarded as promoted
by a deficit of ‘pressure’ in most cases. The term used here replaces the ambiguous and con-
troversial ‘force of crystallization’ (Kristallizationskraft) which in any case is an effect and
not a process. Pressure growth is independent of idioblasticity.

Solution-transfer (Losungsumsatz) (Heim 1921): the dissolution, transport and precipitation of
crystal substance from one part of a rock interior to another via a solution medium. In the present context
the term is restricted to concomitant pressure-solution, diffusion and crystallization in any
crystal-solution system where solute movements can reasonably be accounted for. Bulk solution
flow may accompany the process but the term itself does not necessarily imply transport of
solution.

5. CRYSTAL-SOLUTION THERMODYNAMICS

As emphasized by Paterson (1973) it is important to define the system conditions before con-
structing or applying a thermodynamic theory. Most theories in the literature seem to be correct
in themselves, but the actual situations they describe may or may not be relevant to specific
geological processes.
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232 D. W.DURNEY

From the foregoing discussion we are presently interested in local crystal-solution equilibrium
at free surfaces and grain boundaries. So in the first instance a crystal-solution theory is required.
This then belongs to the class of ‘incoherent phase transformations’ (McLellan 1970) which
are distinct from ‘coherent transformations’ such as grain boundary migration. Secondly,

equilibrium needs to be expressed in terms of Gibbs free energy functions inasmuch as tem-
perature and stress are usually the long-term geological constraints. (This allows changes of
shape and volume as well as isothermal heat exchange.) Thirdly, a strictly non-hydrostatic
theory is required. Hydrostatically derived theories such as those of Ramberg (1947, 1952) and
Correns & Steinborn (1939) lead, to ambiguity of the meaning of ‘pressure’ in non-hydrostatic
situations.

As a starting point we may take Gibbs’s original equation 411 (1878). This is his final expres-
sion for the equilibrium relation of a stressed crystal and a multicomponent solution at a
principal stress face (o7,) at constant temperature. In his original notation this is

A d/h)(F) (dﬂl) (¥)
{m (dp)t,m-v} d[)+m(dm . md s+ m ) om dmy + etc.

_ dy dz\ . dx dx dz dx\ , dy
- (Xxrp G d T+ Xrd o (Tt )i @

dx’ dy’
(cf. original paper for symbols) and in present day notation

)
O Edp=rado,+3 () 7 dn = —n{(oa= ) dey e+ (7, — ) de
- =w (5)

where o, = p and the superscript (F) denotes fluid phase terms.

The right hand side of this equation is the difference of two second order terms which Gibbs
refers to as ‘work’ — one for the solid under hydrostatic pressure p and the other under non-
hydrostatic pressure o, = p, 0, 0,. Each of these terms is a small quantity and their difference
is even smaller. For halite at 17 °C under a differential stress of 20 MPa uniaxial, using
compliance data from Clark (1966) and solution data from Washburn (1928, p. 79* the in-
tegrated magnitude of W’ is about 1/1100th that of the combined first order pressure-volume
terms (L.h.s.) in equation (5) for the stressed face.

Riecke derived an analogous equation for crystal-melt systems (1895, eqn. 14) which is
almost identical to Gibbs’ equation 406. He then set dp and hence his (v —v) dp term to zero,
so relating depression of melting point directly to the W’ term (1895, eqn. 17, o, = an axial stress,
0, =0y = p)

(s —5) AT = v, (0,— o) de,t. (6)

Riecke’s principle (1895, p. 737, lines 6-17; also proposed by Thomson in 1861), that an
elastically strained crystal is more fusible or soluble than an elastically less strained crystal,
was based on this restriction, equation (6). Not only is the effect small in magnitude, it applies
only to those crystal boundaries showing the same unchanged normal stress such as the free faces
(do, = do, = dp = 0) in Riecke’s equation (also Riecke 1912, p. 100). It tells us nothing
about the relative stability of two differently stressed faces nor about the overall relative
stability of different stressed whole crystals.

* yields v, = 24.2 ml by tangent to V against (x, +x,)[x, corrected to 10 MPa.
1 de, printed as de, in original equation.
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PRESSURE-SOLUTION AND CRYSTALLIZATION DEFORMATION 233

In solution-transfer processes it is essential, as was qualitatively appreciated by Sorby
(1863), to retain the 1st order or ‘pressure-volume’ terms as variables in order to study the
inter-reaction of differently stressed faces. This can be satisfactorily achieved simply by trans-
posing Gibbs’ eqn. 411 so that a solution composition function is related to the  pressure-volume’ function
plus W’'. For a binary solution (solute; and solvent,) this is:

) (¢2)]
(27“:);10 dx, = (ST'MJ)TJ) dx, = vydo,— i dp+ W". (7)
To cover grain boundary conditions o, and p are now regarded as independent variables
(see §3), and, following Kamb (1959), Kumazawa (1963), McLellan (1970), Durney (1972),
and Paterson (1973), it can also be shown for equilibrium with respect to growth and dissolu-
tion that o, is replaceable by o (together with a suitable generalization of W’).
With these generalizations and with W’ ~ 0 equation (7) becomes

(a—'ul)(F) dx; ~ v,do—o{"dp. (8)
0%y /7, p

This reduces to the appropriate expression in the limiting case of uniform hydrostatic pressure
(Turner & Verhoogen 1960, eqn. 2-47; see also Denbigh 1971, eqn. 7.7) doyyarostatic = dp-
Equation (8) shows that

(a) a positive (compression positive) increment of ¢ alone always increases the equilibrium
solute concentration.

(b) a positive increment of p alone always reduces the equilibrium solute concentration, and

(¢) positive and equal increments of both o and p together increase the equilibrium solute

concentration when #; < v, and vice versa when 7; > v;.
Ionic crystals usually go into aqueous solution with a volume decrease (Sorby 1863; Holland
1967) hence #; < v;. NH,CI, KI and CdI, are among the few exceptions. Furthermore, because
in many instances v; > (vy—0y), variations of effective normal stress d(o — p), (a) or (b), often produce
larger equilibrium solubility changes than uniform hydrostatic pressure variations do = dp, (¢). For NaCl
at 17°C (a) is 9.6 times and (b) is 8.6 times greater in magnitude than (c)

All these effects (a), (b) and (¢) may be possible. But if differential fluid pressures over typical
solute diffusion distances are not large it should be mainly (&) which accounts for the geological
notion (§4) that local increased ‘pressure’ (on the solid) promotes ‘pressure-solution’. The
remaining discussion will therefore explore this principle, (a).

To obtain the finite local equilibrium condition on a small surface in the simple situation
where T and p are uniform and constant, equation (8) can be integrated from any reference
crystal stress state o and 6, (6, = p = 0 is most convenient). Thus

(1) = f v do = (Wl’)?p"‘”l”‘%”& (9)
For non-ideal solutions and to the first order this is
a
RT log, (a—z)z' ) ~ yo(o—0y). (10)

(The approximation now signifies that all second terms apart from those at o, a, are approxi-
mated to zero).
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234 D. W.DURNEY

Equation (10), which applies to interfaces but not to crystal interiors, provides a simplified
criterion for growth and dissolution. The three physical possibilities are, (i) local equilibrium when
the actual value of activity ¢ = a, and the solution is perfectly saturated with respect to the
solid for the particular 7, p, o (and @), (ii) local pressure-solution or dissolution when the solution is
undersaturated, ¢ < a,, and (iii) local pressure-growth or free growth when the solution is
supersaturated, @ > a,. (It has frequently been suggested that crystals are incapable of growing
against a great pressure (e.g. Shearman, Mossop, Dunsmore & Martin 1972 and Phillips
1974) as this would require a prohibitively high ‘supersaturation’ compared with saturation
at atmospheric conditions. However, ‘saturation’ should be defined according to the prevailing
local conditions (eqn. 10). Clearly, a small displacement from the actual equilibrium
condition could stimulate growth at any pressure.)

This criterion (10) provides the basis for finding the areas of growth and dissolution in an
aggregate of crystals under any stress field. This could be done by establishing an array of
criteria, one for each small surface element, and working out the steady state values of @ from
irreversible thermodynamics. There is no general analytical solution to this but finite element
methods may hold some promise for complex cases. For the moment we can qualitatively
predict the behaviour of a few simple cases. A quantitative result is briefly mentioned in §8.

Ficure 1. Normal stress contours on a homogeneously stressed sphere.
Contour intervals (o — 07) ; stress (o, — 0y)[(0y—03) = 3.

6. SINGLE CRYSTAL AND AGGREGATE BEHAVIOUR

Case 1. A single crystal under homogeneous stress in a closed non-porous system. The normal stress
varies around the crystal in a way such as that shown in figure 1. For irregular shaped grains
the pattern would be more complex. From the r.h.s. of equation (9) the surface potential of
the crystal varies in sympathy with this o. Thus, the different parts of the crystal surface are
unstable with respect to one another (figure 2a). As soon as diffusion is permitted (figure 25)
the values of # adjust to A > B > C > D according to the coefficients of diffusion and phase
change so that high o faces go into solution and feed the growth of the low o faces. The rate
of dissolution or crystallization is related to the divergence of grain boundary diffusive flux:

J, = V.J, = =D, V& oc — D, V3(afy). (11)
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PRESSURE-SOLUTION AND CRYSTALLIZATION DEFORMATION 235

Thus for a freely displaceable spherical grain boundary the maximum dissolution rate is at o,
faces and the maximum growth rate is at o faces. Somewhere between is a line separating the
growth area from the dissolution area (Jg; = 0).

By this means a differential stress produces a permanent differential strain without affecting the
interior of the crystal (figure 3, plate 10) or its volume.

g 41
i &
A

(a) no diffusion o .(b) diffusion

Ficure 2. Case 1 system: influence of differential stress. (¢) Without diffusion, crystal surface g = fluid g
(A = A’ > D’ = D). (b) With diffusion, A" and D’ adjust to B and C causing flux (arrows) leading to
external shape change to S in given time.

Case 2. A single crystal under homogeneous stress in an open non-porous system. If case 1 is opened to
allow diffusive influx or escape of solute the concentrations around the crystal will all be corre-
spondingly upgraded or downgraded causing a shift of the lines between growth and dissolution
and thus a net volume change for the whole crystal. A permanent volumetric strain is thus super-
imposed on the differential strain. In extreme cases there may be only dissolution or only growth
on all parts of the crystal.

Case 3. Consider two open sub-systems inside a closed heterogeneously stressed system (figure 4)
Each crystal undergoes its own differential strain because of the local differential stress. In
addition, there is an overall g difference between them due to the difference in mean stress.
Hence material goes to B at the expense of A by a particular path or paths such as shown in
figure 4. Figures 5 and 6, plate 10, illustrate migration interpreted as promoted by mean stress
gradients around a hard object (@ assumed from P. Cobbold, personal communication 1971;
Ghosh & Sengupta 1973 and Stromgard 1973).

Although mean stress variations must be importantin natural systems, as far as crystal-solution
theory is concerned @ only operates indirectly through the ensemble of surface normal stresses.
Kinetic and geometric surface factors could be just as important in determining the effective
relative stability of two grains. For example, a rapid diffusion channel between B5 and A4 in
figure 4 would produce a reverse flux. Similarly, a reversal of flux might occur if the crystals
were very flat, A having a large o surface and B having a large o surface.

Case 4. A porous crystal aggregate in a quasi-homogeneously stressed and effectively semi-permeable system.
(“Effectively semi-permeable’ means here that the fluid is allowed to escape without carrying
significant quantities of solute with it in solution. In ‘open’ systems significant quantities could
be exchanged by transfluent solutions or by sustained diffusion gradients.)

As in case 1, there is dissolution on high o grain contacts and growth on low ¢ faces in a
porous aggregate. But unlike case 1 the minimum surface potential would generally be on pore
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walls rather than on a grain boundary because from equation (3): 0pore = £ S T3poundary-
Since diffusion through a pore fluid is also much faster than along a grain boundary, it can be
concluded that there is a strong preference for growth in the pores. Consequently pores, fissures and
micro-cracks must be unstable structures prone to cementation in a rock undergoing pressure-
solution. (This could to be one of the reasons for low porosity in deeply buried sediments and
metamorphic rocks.)

As pressure growth would seem to be largely by-passed in porous rocks, the solution-transfer
strain (excluding brittle deformation) should be dominantly uniaxial shortening increments.
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PRESSURE-SOLUTION AND CRYSTALLIZATION DEFORMATION 237

But as soon as the porosity is eliminated, the situation would revert to case 1 where pressure
growth extensional strains may commence, albeit at a slower rate than cavity crystallization. This
transition in behaviour may have important structural consequences in the progressive defor-
mation of porous sediments; for example, the transition from concentric folding by inner arc
shortening (Chouckrone 1969) to class 1¢ and 3 folding involving ‘flattening’.

Moderately open porous systems should behave in a similar manner except that the
volumetric strains are not limited by the initial porosity as they would be in ‘semi-permeable’
systems.

7. DISPLACEMENTS AND STRAINS

It is not obvious from reversible thermodynamics what the displacements are that accompany
growth or dissolution at grain contacts. The theory used so far is concerned only with normal
components of displacement.

Three different approaches have been attempted in an effort to solve this problem. The one
described here borrows the minimum potential energy theorem from finite element methods.
For stable time dependent flow, this theorem states that U, — V, is minimized, where U, is the
internal deformation energy rate and V), is the energy rate supplied by the environment during
displacement of the system (Voight & Dahl 1970; Stephansson & Berner 1971).

A closed steady state diffusion situation like that in figure 24 is assumed but it is envisaged in
three dimensions (o, > o, > o) and with the system boundary just enclosing the grain and its
intergranular fluid. The total rate of steady diffusive work, corresponding to a minimum U,
is assumed to be predetermined by the surface chemical potential gradients and by the kinetic
coefficients through the irreversible internal entropy production criterion. Minimization of
U, -V, then depends on maximization of V,; that is, maximization of collapse energy and
minimization of expansion energy. Since the local rates of volume addition or removal (67}
around the crystal are also predetermined by the diffusion process it is obvious in this situation
that V,, is maximized when all dissolution displacements parallel the oy axis (X0, 8V,) and when all growth
displacements parallel the oy axis (Xo38V;). Unless 0y = 03 or 0y = 07y, V, can furthermore only
reach its maximum possible value when there is no growth or dissolution in the oy direction. Steady
state normal displacements on small o, faces also seem unlikely when all other displacements
are taking place at right angles to o.

Similar arguments apply to moderately open systems. In strongly open systems (those where
some growth has to occur on o, faces as in the experiments of Becker & Day (1905), or some
dissolution on o faces) some of the displacements will have to take place in directions other than
those stated above. Maximization of ¥, however, requires such displacements to be kept to a
minimum rate.

In closed to moderately open systems at steady state, the local displacements at grain
boundaries should therefore approach x, y, z— (x+0u), y, z on a growing face,

XY, 2> X, 4, (z2+8w)

on a dissolving face (3w negative), and x, ¥, z — ¥, y, zin the interior of the crystal and on o,
faces + oy or #+ oy (v, y, z axes being parallel and rotating with local stress axes o3, 05, 07 in
the crystal). Geological examples of parallel pressure-solution and pressure growth displace-
ments are shown in figures 7 and 8 respectively, plate 10.
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238 D. W. DURNEY

Strains
In an aggregate of crystals the accumulated displacements over a series of grain boundaries

tend to smooth out the displacement discontinuities (see, for example, Ramsay 1976) and it
becomes possible to define a homogeneous solution-transfer bulk strain rate tensor which is coaxial

with the stress axes: ; 0 0
1
. e,
€soln-trans = d bo__lcilt-trans = 0 0 0j. (12)
0 0 é

Thus, small solution-transfer pure strains should commonly be plane strain: pure shear strain
in closed non-porous systems, general plane strain (with a volumetric component) in moderately
open non-porous systems, and uniaxial shortening in ‘semi-permeable’ or moderately open porous
systems. Superimposed on this, of course, there may be contributions from brittle and disloca-
tion deformation mechanisms. Usually, the finite solution-transfer bulk strain, which depends on
the sum of the infinitesimal increments, will zo¢ be plane strain unless the strain path is irrota-
tional about the initial x and z axes.

8. DISPLACEMENT RATE

Finally, equation (13)t, which has been derived for pressure solution or pressure growth on
a circular plane interface:

dn _ 6g Dy 4(o, — 0y ¥y
T = o (e"p( SRT )*1) (13)

shows that the displacement rates are directly proportional to ¢y and D, and inversely proportional to
contact area. They are also an exponential function of stress, rather than a linear function as
suggested by Coble (1963) and Green (1970), because of the exponential dependence of solute
activity (and vacancy concentration) on stress.

Equation (13) is a series approximation for an exact solution based on equation (10) and
assumes radial diffusion, virtual equilibrium and constant activity coefficient. The approxima-

tion holds when 5 > exp [4(0, — 0y) vo/3RT] > 3.

DESCRIPTION OF PLATE 10

Ficure 3. Differential pressure-solution and growth strain around crinoid calcite single crystals. Dogger,
Morcles Nappe, Saillon, Switz.; XZ sect. (magn. x 36).

FicurE 6. Strong migration of quartz around hard andalusite porphyroblast. Biotite-garnet residue trails in
matrix: garnet residue in appressed microstylolitic contact between porphyroblasts. Andalusite schist,
Kanmantoo Mine, S. Australia; XZ sect. (magn. x 11).

Fieure 7. Unidirectional contractile pressure-solution displacements shown by parallel sided stylolite teeth
and sockets. Late tectonic stylolite (and coeval calcite stretch veinlets) overprinting strong §; fabric.
Malm, Wildhorn - Diablerets root zone, Ardon, Switz. ; late XZ sect. (magn. x 30).

Ficure 8. Unidirectional instantaneous extensile pressure growth displacements as shown by parallelism of
quartz—calcite fibres at various growth stages. Syntectonic pressure-shadow around concretionary pyrite,
Lias, Autochthon, Arbignon, Switz.; XZ sect. (magn. X 36).

1 Comparable equations for an identical situation have been worked out independently by Dr E. Rutter.
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SYMBOLS
activity of solute

local equilibrium activity

reference equilibrium activity at oy, 69, p, T
concentration, mass %,

reference concentration at o

grain boundary diffusion coefficient times effective grain boundary thickness

)\
A

y
LY

|

S

a

ae

a

¢

Co

Dy

e base of Naperian logarithm
€1, 3 maximum and minimum principal extensional strains
e small strain tensor

Jh grain boundary diffusive flux, equal to —DyVe

Jy dissolution rate (g s~! cm™2)

normal displacement component, dissolution negative

2
—
o
e
=9}
om
-

SOCIETY

‘fluid’ hydrostatic pressure
contact radius

molar entropy
time

n

p

r

R universal gas constant
s

14

T absolute temperature
u

PHILOSOPHICAL
TRANSACTIONS
OF

, W displacements in x and z
U, internal energy
v molar volume
vy molar volume of crystal at o, ¢, T'
o crystal molar volume at oy, 6, T'
7 partial molar volume of solute
external energy
" extensive crystal volume
w’ Gibbs’ work difference
%, 4,z coordinate axes
%y 9, ; mole fractions of solute and solvent or ith component

/‘\ .« . .
T v solute activity coefficient
’_J\ ~ p density
< — I solute chemical potential
5‘ —~ 3 reference p,, at o
M= o normal stress on the solid
o) 5 o reference normal stress
O 0y, 5 3 Max., int. and min. principal compressive stresses
= o, a principal stress
3z Oy, y, ray Stress components perpendicular to o,
%O Ty, average normal stress on a surface
85 L oy long term grain boundary tensile strength at @
2 <0 [ mean stress (o + 0y +03)/3
:15 c stress tensor
E,_ 6, reference stress tensor
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